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Outline

• The virtualization model 
– Charm++ and AMPI
– Virtualization: a silver bullet

• BG/L Program Development environment
– Emulation setup
– Simulation and Performance Prediction

• Applications using BG/L
– Scaling  Issues
– Example: Molecular Dynamics

• Ongoing research
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Technical Approach

• Seek optimal division of labor between “system” and programmer:

Specialization

MPI

HPF

A
utom

ation

Charm++

Expression

Scheduling

Mapping

Decomposition

Decomposition done by programmer, everything else automated
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Object-based Decomposition

• Basic Idea: 
– Divide the computation into a large number of pieces 

• Independent of number of processors
• Typically  larger than number of processors

– Let the system map objects  to processors

• Old idea? G. Fox Book (’86?), DRMS (IBM), ..

• Our approach is “virtualization++”
–Language and runtime support for virtualization
–Exploitation of virtualization to the hilt
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Virtualization: Object-based Parallelization

User View

System implementation

User is only concerned with interaction between objects (VPs)
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Realizations: Charm++

• Charm++
– Parallel C++ with Data Driven Objects (Chares)
– Asynchronous method invocation

• Prioritized scheduling
– Object Arrays
– Object Groups: 
– Information sharing abstractions: readonly, tables,..
– Mature, robust, portable (http://charm.cs.uiuc.edu)
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Object Arrays

• A collection of data-driven objects
– With a single global name for the collection
– Each member addressed by an index

• [sparse] 1D, 2D, 3D, tree, string, ...
– Mapping of element objects to procS handled by the system

A[0] A[1] A[2] A[3] A[..]

User’s view
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Comparison with MPI

• Advantage: Charm++
– Modules/Abstractions are centered on application data 

structures, 
• Not processors

– Several other…
• Advantage: MPI

– Highly popular, widely available, industry standard
– “Anthropomorphic” view of processor

• Many developers find this intuitive
• But mostly:

– There is no hope of weaning people away from MPI
– There is no need to choose between them!
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Adaptive MPI

• A migration path for legacy MPI codes 
• AMPI = MPI + Virtualization
• Uses Charm++ object arrays and migratable threads
• Minimal modifications to convert existing MPI programs 

– Automated via AMPizer
• Based on Polaris Compiler Framework

• Bindings for 
– C, C++, and Fortran90
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AMPI:

7 MPI 
processes
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AMPI:

Real Processors

7 MPI 
“processes”

Implemented 
as virtual 
processors 
(user-level 
migratable
threads)
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II: Benefits of Virtualization

• Better Software Engineering
• Message Driven Execution 
• Flexible and dynamic mapping to processors
• Principle of Persistence:

– Enables Runtime Optimizations
– Automatic Dynamic Load Balancing
– Communication Optimizations
– Other Runtime Optimizations
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Modularization

• Logical Units decoupled from “Number of processors” 
– E.G. Oct tree nodes for particle data
– No artificial restriction on the number of processors

• Cube of power of 2

• Modularity:
– Software engineering: cohesion and coupling
– MPI’s “are on the same processor” is a bad coupling principle
– Objects liberate you from that:

• E.G. Solid and fluid moldules in a rocket simulation
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Rocket Simulation

• Large Collaboration headed Mike Heath
– DOE supported ASCI center

• Challenge:
– Multi-component code, with modules from independent 

researchers
– MPI was common base

• AMPI: new wine in old bottle
– Easier to convert
– Can still run original codes on MPI, unchanged
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Rocket simulation via virtual processors
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AMPI and Roc*: Communication
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Message Driven Execution

Scheduler Scheduler

Message Q Message Q

Virtualization leads to Message Driven Execution

Which leads to Automatic Adaptive overlap of computation and 
communication
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Adaptive Overlap via Data-driven Objects

• Problem: 
– Processors wait for too long at “receive” statements

• Routine communication optimizations in MPI
– Move sends up and receives down
– Sometimes. Use irecvs, but be careful

• With Data-driven objects
– Adaptive overlap of computation and communication
– No object or threads holds up the processor
– No need to guess which is likely to arrive first
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Adaptive overlap and modules

SPMD and Message-Driven Modules 
(From A. Gursoy, Simplified expression of message-driven programs and 
quantification of their impact on performance, Ph.D Thesis, Apr 1994.)
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Handling OS Jitter via MDE

• MDE encourages asynchrony
– Asynchronous reductions, for example
– Only data dependence should force synchronization

• One benefit:
– Consider an algorithm with N steps

• Each step has different load balance:Tij
• Loose dependence between steps 

– (on neighbors, for example)

– Sum-of-max (MPI) vs max-of-sum (MDE)
• OS Jitter:

– Causes random processors to add delays in each step
– Handled Automatically by MDE
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Virtualization/MDE leads to predictability

• Ability to predict:
– Which data is going to be needed and
– Which code will execute
– Based on the ready queue of object method invocations

• So, we can:
– Prefetch data accurately
– Prefetch code if needed
– Out-of-core execution
– Caches vs controllable SRAM

S S
Q Q

Salivating at the shared SRAM in BG/L
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Flexible Dynamic Mapping to Processors

• The system can migrate objects between processors
– Vacate processor used by a parallel program
– Dealing with extraneous loads on shared workstations
– Shrink and Expand the set of processors used by an app

• Shrink from 1000 to 900 procs. Later expand to 1200.
• Adaptive job scheduling for better System utilization

– Adapt to speed difference between processors
• E.g. Cluster with 500 MHz and 1 Ghz processors

• Automatic checkpointing
– Checkpointing = migrate to disk!
– Restart on a different number of processors
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Principle of Persistence

• Once the application is expressed in terms of  
interacting objects:
– Object communication patterns and      computational loads  

tend to persist over time
– In spite of dynamic behavior

• Abrupt and large,but infrequent changes (eg:AMR)
• Slow and small changes (eg: particle migration)

• Parallel analog of principle of locality
– Heuristics, that holds for most CSE applications
– Learning / adaptive algorithms
– Adaptive Communication libraries
– Measurement based load balancing
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Measurement Based Load Balancing

• Based on Principle of persistence
• Runtime instrumentation

– Measures communication volume and computation time

• Measurement based load balancers
– Use the instrumented data-base periodically to make new 

decisions
– Many alternative strategies can use the database

• Centralized vs distributed
• Greedy improvements vs complete reassignments
• Taking communication into account
• Taking dependences into account (More complex)
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Load balancer in action
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Optimizing for Communication Patterns

• The parallel-objects Runtime System can observe, 
instrument, and measure communication patterns
– Communication is from/to objects, not processors
– Load balancers use this to optimize object placement
– Communication libraries can optimize

• By substituting most suitable algorithm for each 
operation

• Learning at runtime
– E.g. Each to all individualized sends

• Performance depends on many runtime characteristics
• Library switches between different algorithms

V. Krishnan, MS Thesis, 1996
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“Overhead” of Virtualization
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Isn’t there significant overhead of virtualization? 

No! Not in most cases.
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Using Charm++/AMPI for BG/L

• How to develop any programming environment for 
a machine that isn’t built yet

• Blue Gene/C emulator using charm++
– Completed last year
– Emulation runs on machines with  hundreds of “normal” 

processors

• Recently retargeted and tested for BG/L
• Charm++ on Blue Gene  Emulator
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Structure of the Emulators

Blue Gene/C
Low-level API

Charm++

Converse

Converse

Charm++

BG/C low level API

Charm++
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Emulation on a Parallel Machine

Simulating (Host) Processor

BG/C Nodes

Hardware thread
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Emulation efficiency

• How much time does it take to run an emulation?
– 8 Million processors being emulated on 100
– In addition, lower cache performance
– Lots of tiny messages

• On a Linux cluster, and Lemieux:
– Emulation shows good speedup
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Emulation efficiency
Emulation Time on Linux Cluster
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Emulator to Simulator

• Step 1: Coarse grained simulation
– Simulation:  performance prediction capability
– Models contention for processor/thread
– Also models communication delay based on distance
– Doesn’t model memory access on chip, or network
– How to do this in spite of out-of-order message delivery?

• Rely on determinism of Charm++ programs
• Time stamped messages and threads
• Parallel time-stamp correction algorithm
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Timestamp correction

• Basic execution: 
– Timestamped messages

• Correction needed when:
– A message arrives with an earlier timestamp than other 

messages “processed” already

• Determinism:
– Messages to Handlers or simple objects
– MPI style threads, without wildcard or irecvs
– Charm++ with dependence expressed via structured dagger
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Performance of correction Algorithm

• Without correction
– 15 seconds to emulate a 18msec timstep
– 10x10x10 nodes with k threads each (200?)

• With correction
– Version 1: 42 minutes per step!
– Version 2: 

• “Chase” and correct messages still in queues
• Optimize search for messages in the log data
• Currently at 30 secs per step

• Alternative algorithm:
– Trace-driven simulation
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Emulator to Simulator

• Step 2: Add fine grained procesor simulation
– Sarita Adve: RSIM based simulation of a node

• SMP node simulation: completed
– Also: simulation of interconnection network
– Millions of thread units/caches to simulate in detail?

• Step 3: Hybrid simulation
– Instead: use detailed simulation to build model
– Drive coarse simulation using model behavior
– Further help from compiler and RTS



August 14, 2002 BlueGene/L 44

Modeling layers

Applications

Libraries/RTS

Proc. Architecture Network model

For each: need a detailed 
simulation and a simpler 

(e.g. table-driven) 
“model”

And methods 
for combining 

them
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Applications on the current system

• Using BG Charm++ 
• LeanMD:

– Research quality Molecular Dyanmics
– Version 0: only electrostatics + van der Vaal

• Simple AMR kernel
– Adaptive tree to generate millions of objects

• Each holding a 3D array
– Communication with “neighbors”

• Tree makes it harder to find nbrs, but Charm makes it easy
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Performance Issues and Techniques

• Scaling to 64K/128K processors
– Communication

• Bandwidth use more important than processor overhead
• Locality: 

– Global Synchronizations 
• Costly, but not because it takes longer
• Rather, small “jitters” have a large impact
• Sum of Max vs Max of Sum

– Load imbalance important, but so is grainsize
– Critical paths 
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Parallelization Example:
Molecular Dynamics in NAMD

• Collection of [charged] atoms, with bonds
– Newtonian mechanics
– Thousands of atoms (1,000 - 500,000)
– 1 femtosecond time-step, millions needed!

• At each time-step
– Calculate forces on each atom 

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Calculate velocities and advance positions
– Multiple Time Stepping : PME (3D FFT) every 4 steps

Collaboration with K. Schulten, R. Skeel, and coworkers
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Traditional Approaches

• Replicated Data:
– All atom coordinates stored on each processor

• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute  force matrix to processors
– Matrix is sparse, non uniform,
– C/C Ratio: sqrt(P)
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Spatial Decomposition

•C/C ratio: O(1)

•However: 

•Load Imbalance

•Limited Parallelism
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Object Based Parallelization for MD:

Force Decomposition + Spatial Deomp.

•Now, we have many 
objects to load balance:

–Each diamond can be 
assigned to any proc.
– Number of diamonds 
(3D): 
–14·Number of Patches
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Bond Forces

• Multiple types of forces:
– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!

• Instead, we do:
– Send to (7) upstream nbrs
– Each force calculated at one patch

B

CA
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700 
vps

192 + 
144 vps

30,000 vps
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NAMD performance using virtualization

• Written in Charm++
• Uses measurement based load balancing
• Object level performance feedback 

– using “projections” tool for Charm++
– Identifies problems at source level easily
– Almost suggests fixes

• Attained unprecedented performance
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PME parallelization

Impor4t 
picture from 
sc02 paper 
(sindhura’s)
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Performance: NAMD on Lemieux

Time (ms) Speedup GFLOPS
Procs  Per Node  Cut  PME  MTS  Cut  PME  MTS  Cut  PME  MTS 

1 1 24890 29490 28080 1 1 1 0.494 0.434 0.48
128 4 207.4 249.3 234.6 119 118 119 59 51 57
256 4 105.5 135.5 121.9 236 217 230 116 94 110
512 4 55.4 72.9 63.8 448 404 440 221 175 211
510 3 54.8 69.5 63 454 424 445 224 184 213

1024 4 33.4 45.1 36.1 745 653 778 368 283 373
1023 3 29.8 38.7 33.9 835 762 829 412 331 397
1536 3 21.2 28.2 24.7 1175 1047 1137 580 454 545
1800 3 18.6 25.8 22.3 1340 1141 1261 661 495 605
2250 3 15.6 23.5 18.4 1599 1256 1527 789 545 733

ATPase: 320,000+ atoms including water
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LeanMD for BG/L

• Need many more objects:
– Generalize hybrid decomposition scheme 

• 1-away to k-away 2-away : 
cubes are half the size.
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5000 
vps

76,000 
vps

256,000 vps
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Emulation Speedup on Lemieux
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Ongoing Research

• Load balancing
– Charm framework allows distributed and centralized
– Recent years, we focused on centralized

• Still ok for 3000 processors for NAMD
– Reverting back to older work on distributed balancing

• Need to handle locality of communication
– Topology sensitive placement

• Need to work with global information
– Approx global info
– Incomplete global info (only “neighborhood”)

• Achieving global effects by local action…
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Communication Optimizations

• Identify distinct communication patterns
– Study different parallel algorithms for each
– Conditions under which an algorithm is suitable
– Incorporate algorithms and runtime monitoring into dynamic 

libraries

• Fault Tolerance
– Much easier at object level: TMR, efficient variations
– However, checkpointing used to be such an efficient 

alternative (low forward-path cost)
– Resurrect past research 
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Multiparadigm programming

• Idea
• Converse
• Paradigms aimed at:

– Charm++, MPI, AMPI, CRL, 
– Frameworks: FEM, AMR, Multiblock, particle
– Other’s paradigms:

• HPF,
• Virtualized versions of GA, UPC??,..
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Summary

• Virtualization as a magic bullet: Charm/AMPI
– Flexible and dynamic mapping to processors
– Message driven execution:

• Adaptive overlap, modularity, predictability
– Principle of persistence

• Measurement based load balancing, 
• Adaptive communication libraries

• BG/L Emulator and Simulator
– Can run 128k proc. Program on current parallel m/cs
– Charm++ and LeanMD ported to BG/L
– Ongoing research in:

• Scalable load balancing, communication optimizations,
• Multiparadigm programming

More info:

http://charm.cs.uiuc.edu


